Table 7 Comprehensive performance comparison across five benchmark datasets using F-measure (\(\hbox {F}^{w}_{\beta }\)), MAE, S-measure (S\(\alpha\)), and mean E-measure (mE\(\xi\)) metrics.

From: Bilateral collaborative streams with multi-modal attention network for accurate polyp segmentation

Models

Endoscene

ClinicDB

ColonDB

ETIS

Kvasir-SEG

 

\(\hbox {F}^{w}_{\beta }\)

MAE

S\(\alpha\)

mE\(\xi\)

\(\hbox {F}^{w}_{\beta }\)

MAE

S\(\alpha\)

mE\(\xi\)

\(\hbox {F}^{w}_{\beta }\)

MAE

S\(\alpha\)

mE\(\xi\)

\(\hbox {F}^{w}_{\beta }\)

MAE

S\(\alpha\)

mE\(\xi\)

\(\hbox {F}^{w}_{\beta }\)

MAE

S\(\alpha\)

mE\(\xi\)

UNet

0.684

0.022

0.843

0.848

0.811

0.019

0.889

0.913

0.491

0.059

0.710

0.692

0.366

0.036

0.684

0.643

0.794

0.055

0.858

0.881

UNet++

0.687

0.018

0.839

0.834

0.785

0.022

0.873

0.891

0.467

0.061

0.692

0.680

0.390

0.035

0.683

0.629

0.808

0.048

0.862

0.886

PraNet

0.843

0.010

0.925

0.950

0.896

0.009

0.936

0.963

0.699

0.043

0.820

0.847

0.600

0.031

0.794

0.808

0.885

0.030

0.915

0.944

ACSNet

0.825

0.013

0.923

0.939

0.873

0.011

0.927

0.947

0.697

0.039

0.829

0.839

0.530

0.059

0.754

0.737

0.882

0.032

0.920

0.941

Polyp-PVT

0.884

0.007

0.935

0.973

0.936

0.006

0.949

0.985

0.795

0.031

0.865

0.913

0.750

0.013

0.871

0.906

0.911

0.023

0.925

0.956

BDG-Net

0.876

0.006

0.937

0.967

0.905

0.007

0.938

0.970

0.714

0.015

0.866

0.895

0.776

0.031

0.866

0.894

0.896

0.028

0.918

0.952

SSFormer-L

0.875

0.007

0.939

0.969

0.906

0.008

0.934

0.963

0.790

0.031

0.866

0.901

0.761

0.015

0.881

0.905

0.911

0.023

0.923

0.957

PVT-CASCADE

0.882

0.008

0.934

0.965

0.923

0.013

0.939

0.969

0.798

0.029

0.864

0.910

0.775

0.016

0.886

0.906

0.918

0.020

0.928

0.964

MEGANet-ResNet

0.863

0.009

0.924

0.956

0.931

0.008

0.950

0.977

0.766

0.038

0.845

0.897

0.753

0.015

0.866

0.912

0.904

0.026

0.916

0.952

PVT-EMCAD-B2

0.869

0.007

0.921

0.965

0.927

0.010

0.943

0.973

0.804

0.028

0.869

0.919

0.759

0.016

0.877

0.902

0.920

0.021

0.929

0.966

BiCoMA (ours)

0.892

0.006

0.946

0.979

0.928

0.005

0.949

0.985

0.829

0.019

0.878

0.923

0.788

0.018

0.889

0.922

0.927

0.018

0.936

0.958