Table 1 The average PSNR28, SSIM29, UCIQE30, and UIQM31 of different methods on TEST-485 and TEST-90. The best performances are marked in bold, respectively.

From: Mamba-convolution hybrid network for underwater image enhancement

Methods

TEST-485

TEST-90

PSNR\(\uparrow\)

SSIM\(\uparrow\)

UCIQE\(\uparrow\)

UIQM\(\uparrow\)

PSNR\(\uparrow\)

SSIM\(\uparrow\)

UCIQE\(\uparrow\)

UIQM\(\uparrow\)

Input

21.3238

0.4653

0.4394

2.1041

19.1723

0.5539

0.4742

1.9429

BRUIE22

23.8345

0.5536

0.4415

2.3101

22.4918

0.6190

0.5386

2.2486

HLRP23

23.5840

0.5846

0.4731

2.3593

23.2744

0.6474

0.5417

2.3244

USUIR9

21.6215

0.5015

0.4375

2.3251

19.8721

0.5955

0.5301

2.2157

PUIE-Net5

24.3833

0.6830

0.5127

2.4344

24.8352

0.6322

0.5461

2.4187

U-shape14

25.4878

0.7100

0.5335

2.6644

25.3739

0.6743

0.5507

2.4615

WaterMamba18

25.6433

0.7465

0.5391

2.7744

25.7950

0.7572

0.5550

2.7379

UWMamba20

26.1438

0.7986

0.5479

2.8717

26.5655

0.8413

0.5775

3.0192

PixMamb19

26.5858

0.8719

0.5658

2.9884

27.5233

0.8833

0.5799

3.1052

MC-UIE

28.0237

0.8901

0.5811

3.5908

29.0206

0.9402

0.5804

3.2311