Table 6 Comparative analysis of OMHSA-IDPRGO model on Edge-IIoT and ToN-IoT datasets22,23,25,26,40,41,42,43.

From: Advances in IoT networks using privacy-preserving techniques with optimized multi-head self-attention model for intelligent threat detection based on plant rhizome growth optimization

Technique

\(Accu_{y}\)

\(\Pr ec_{n}\)

\({\text{Re}} ca_{l}\)

\(F1_{Score}\)

Edge-IIoT dataset

 LSTM-CSAE

96.35

89.58

93.79

93.55

 MhSaBiGRNN

98.19

91.63

93.21

89.67

 FL

95.32

94.00

93.62

89.92

 EECA-LSTM

91.35

90.47

92.98

93.90

 LSTM-KPCA

95.81

89.02

93.23

93.04

 ML-PCC and IF

98.60

90.95

92.53

89.09

 Shallow ANN

94.76

93.81

92.97

89.34

 Baseline DNN

98.65

93.75

92.18

89.49

 DAE-LSTM

91.56

93.87

90.05

91.58

 XCT-DF

89.04

90.59

92.02

93.61

 OMHSA-IDPRGO

99.11

94.67

94.66

94.66

ToN-IoT dataset

 MNBD

90.56

90.76

83.71

82.34

 NFA

98.26

89.83

82.88

80.69

 GNN

90.46

91.36

84.31

82.84

 CNN method

90.05

90.24

83.20

81.60

 DNN algorithm

97.59

89.13

82.36

80.08

 LSTM

89.76

90.59

83.64

82.19

 Decision tree

98.15

89.03

80.75

80.29

 kNN algorithm

97.18

90.03

80.76

84.44

 PCA model

89.23

90.01

80.14

80.54

 Naïve Bayes

96.29

89.92

82.53

85.11

 OMHSA-IDPRGO

99.18

91.34

84.72

86.47