Table 1 Summarization of the existing work.

From: Multi-kernel inception-enhanced vision transformer for plant leaf disease recognition

Paper references

DL model

Dataset

Class

Accuracy (%)

Mohanty et al.14

AlexNet, GoogleNet

PlantVillage14

38

99.34

Ferentinos et al.15

AlexNet, VGG,

Overfeat, GoogleNet

AlexNetOWTBn

PlantVillage14

58

99.48

Geetharamani et al.32

Nine layer CNN

PlantVillage14

38

96.46

Chen et al.33

VGGNet with two

inception layer

Maize dataset14

4

84.25

Sethy et al.34

11 state-of-art CNN

architecture with

SVM for classification

Rice dataset34

4

98.38

Too et al.18

Fine tune 6 different

CNN models

PlantVillage14

38

99.76

Atila et al.19

EfficientNet

PlantVillage14

38

99.38

Zeng et al.21

Self-attention CNN with

Residual Connection

AES-CD9214

MK-D2 dataset35

6

95.59

Qian et al.23

Transformer and Multi-

head attention

Maize dataset14

4

98.7

Pandey24

DADCNN-5

PlantVillage14

38

99.93

Bhujel et al.25

CNN with Multiple

attention

Tomato leaf14

10

99.69

Lu et al.27

GET

GLDP12k dataset27

11

98.14

Yu et al.28

ViT architecture

Ibean36

3

99.22

Borhani et al.29

ViT architecture

Wheat rust37

3

100

Mohamed Zarboubi

et al.26

CustomBottleneck-

VGGNet

PlantVillage14

10

99.12

Abdelaaziz

Bellout et al.31

LT-YOLOv10n

Roboflow Universe,

PlantVillage14

9

98.7

Bellout et al.30

Multiple YOLO

architecture

PlantVillage14

PlantDoc38

3

93.1