Table 9 Performance comparison with different optimizers.
From: Multi-kernel inception-enhanced vision transformer for plant leaf disease recognition
Optimizer | Training Acc | Training loss | Validation Acc | Validation Loss |
|---|---|---|---|---|
Apple dataset41 | ||||
 SGD | 0.4638 | 0.9856 | 0.3891 | 1.0374 |
 RMSProp | 0.9982 | 0.1178 | 0.9968 | 0.1251 |
 Adam | 0.9972 | 0.3728 | 0.9923 | 0.3732 |
 Adamax | 0.8147 | 0.8556 | 0.7023 | 0.8703 |
 Adadelta | 0.8238 | 0.5591 | 0.7176 | 0.8390 |
 Nadam | 0.8268 | 0.5621 | 0.7248 | 0.8232 |
 Ftrl | 0.8562 | 0.5394 | 0.7451 | 0.8132 |
Rice dataset34 | ||||
 SGD | 0.8692 | 0.5346 | 0.7318 | 0.6146 |
 RMSProp | 1.000 | 0.3393 | 0.9927 | 0.3567 |
 Adam | 1.000 | 0.3328 | 0.9970 | 0.3528 |
 Adamax | 0.9168 | 0.4285 | 0.8527 | 0.5128 |
 Adadelta | 0.8571 | 0.5348 | 0.8038 | 0.5793 |
 Nadam | 0.8179 | 0.5249 | 0.7748 | 0.6173 |
 Ftrl | 0.8027 | 0.5294 | 0.7819 | 0.6123 |
Ibean dataset36 | ||||
 SGD | 0.4152 | 1.0348 | 0.3750 | 1.0877 |
 RMSProp | 0.9826 | 0.3290 | 0.9294 | 0.4241 |
 Adam | 0.9965 | 0.3028 | 0.9702 | 0.4028 |
 Adamax | 0.4152 | 1.0348 | 0.3750 | 1.0877 |
 Adadelta | 0.4152 | 1.0348 | 0.3750 | 1.0877 |
 Nadam | 0.4152 | 1.0348 | 0.3750 | 1.0877 |
 Ftrl | 0.4152 | 1.0348 | 0.3750 | 1.0877 |
Cassava dataset42 | ||||
 SGD | 0.7682 | 0.6251 | 0.5025 | 0.7396 |
 RMSProp | 0.9046 | 0.4376 | 0.7381 | 0.6451 |
 Adam | 0.9247 | 0.4228 | 0.7651 | 0.6328 |
 Adamax | 0.7187 | 0.6429 | 0.4627 | 0.7914 |
 Adadelta | 0.7097 | 0.6452 | 0.4607 | 0.8014 |
 Nadam | 0.7285 | 0.6104 | 0.4821 | 0.7552 |
 Ftrl | 0.7047 | 0.6625 | 0.4663 | 0.7936 |
PlantVillage dataset14 | ||||
 SGD | 0.8732 | 0.4753 | 0.8271 | 0.5129 |
 RMSProp | 0.9952 | 0.1393 | 0.9918 | 0.2178 |
 Adam | 0.9973 | 0.1347 | 0.9942 | 0.1836 |
 Adamax | 0.9263 | 0.4621 | 0.8575 | 0.4726 |
 Adadelta | 0.8357 | 0.4961 | 0.7817 | 0.6129 |
 Nadam | 0.9136 | 0.3961 | 0.8537 | 0.4327 |
 Ftrl | 0.8436 | 0.4853 | 0.7971 | 0.5326 |