Table 7 Performance of LDA-GMCB using different classifiers on lncRNADisease v2.0, MNDR, and lncRNADisease v3.0. The best performance is denoted as bold.

From: Decoding potential lncRNA and disease associations through graph representation learning and gradient boosting with histogram

Dataset

Classifier

Precision

Recall

Accuracy

F1-score

AUC

AUPR

lncRNADisease v2.0

MLP

0.8358 ± 0.1119

0.8107 ± 0.1235

0.8250 ± 0.0774

0.8173 ± 0.1175

0.9037 ± 0.0495

0.9108 ± 0.0415

SVM

0.8746 ± 0.0260

0.8469 ± 0.0332

0.8623 ± 0.0198

0.8600 ± 0.0207

0.9378 ± 0.0146

0.9399 ± 0.0147

RF

0.8498 ± 0.0218

0.8343 ± 0.0303

0.8431 ± 0.0179

0.8416 ± 0.0189

0.9192 ± 0.0138

0.9143 ± 0.0177

XGBoost

0.8734 ± 0.0280

0.8664 ± 0.0296

0.8700 ± 0.0223

0.8695 ± 0.0223

0.9420 ± 0.0142

0.9423 ± 0.0162

HGBoost

0.8842 ± 0.0235

0.8707 ± 0.0289

0.8781 ± 0.0199

0.8771 ± 0.0206

0.9464 ± 0.0135

0.9506 ± 0.0143

MNDR

MLP

0.9116 ± 0.0155

0.8788 ± 0.0187

0.8967 ± 0.0107

0.8947 ± 0.0112

0.9434 ± 0.0105

0.9541 ± 0.0097

SVM

0.9110 ± 0.0132

0.8618 ± 0.0169

0.8887 ± 0.0099

0.8856 ± 0.0105

0.9498 ± 0.0072

0.9596 ± 0.0052

RF

0.9003 ± 0.0141

0.8784 ± 0.0161

0.8905 ± 0.0109

0.8891 ± 0.0112

0.9539 ± 0.0081

0.9604 ± 0.0076

XGBoost

0.9321 ± 0.0154

0.9100 ± 0.0164

0.9217 ± 0.0106

0.9208 ± 0.0108

0.9727 ± 0.0058

0.9770 ± 0.0048

HGBoost

0.9339 ± 0.0131

0.9155 ± 0.0168

0.9253 ± 0.0105

0.9245 ± 0.0108

0.9734 ± 0.0058

0.9779 ± 0.0046

lncRNADisease v3.0

MLP

0.8855 ± 0.0177

0.8873 ± 0.0220

0.8860 ± 0.0122

0.8861 ± 0.0125

0.9495 ± 0.0100

0.9469 ± 0.0093

SVM

0.8906 ± 0.0124

0.9016 ± 0.0140

0.8953 ± 0.0096

0.8960 ± 0.0096

0.9599 ± 0.0059

0.9563 ± 0.0073

RF

0.8976 ± 0.0128

0.9109 ± 0.0154

0.9034 ± 0.0100

0.9041 ± 0.0100

0.9620 ± 0.0054

0.9584 ± 0.0070

XGBoost

0.8981 ± 0.0115

0.9182 ± 0.0137

0.9070 ± 0.0090

0.9080 ± 0.0090

0.9633 ± 0.0056

0.9572 ± 0.0081

HGBoost

0.9060 ± 0.0135

0.9163 ± 0.0121

0.9105 ± 0.0094

0.9110 ± 0.0092

0.9657 ± 0.0060

0.9605 ± 0.0086