Table 8 Ablation experiments results of three different feature extraction approaches. The best performance is denoted as bold.
Dataset | Feature | Precision | Recall | Accuracy | F1-score | AUC | AUPR |
|---|---|---|---|---|---|---|---|
lncRNADisease v2.0 | Linear feature | 0.8746 ± 0.0327 | 0.7997 ± 0.0399 | 0.8420 ± 0.0259 | 0.8347 ± 0.0283 | 0.9200 ± 0.0192 | 0.9292 ± 0.0177 |
Nonlinear feature | 0.8457 ± 0.0252 | 0.8581 ± 0.0317 | 0.8503 ± 0.0196 | 0.8513 ± 0.0199 | 0.9244 ± 0.0140 | 0.9193 ± 0.0188 | |
LDA-GMCB | 0.8842 ± 0.0235 | 0.8707 ± 0.0289 | 0.8781 ± 0.0199 | 0.8771 ± 0.0206 | 0.9464 ± 0.0135 | 0.9506 ± 0.0143 | |
MNDR | Linear feature | 0.9174 ± 0.0137 | 0.9038 ± 0.0168 | 0.9111 ± 0.0103 | 0.9104 ± 0.0105 | 0.9688 ± 0.0057 | 0.9733 ± 0.0045 |
Nonlinear feature | 0.9138 ± 0.0209 | 0.9095 ± 0.0202 | 0.9117 ± 0.0167 | 0.9115 ± 0.0166 | 0.9708 ± 0.0243 | 0.9703 ± 0.0319 | |
LDA-GMCB | 0.9339 ± 0.0131 | 0.9155 ± 0.0168 | 0.9253 ± 0.0105 | 0.9245 ± 0.0108 | 0.9734 ± 0.0058 | 0.9779 ± 0.0046 | |
lncRNADisease v3.0 | Linear feature | 0.8961 ± 0.0133 | 0.8734 ± 0.0156 | 0.8859 ± 0.0095 | 0.8845 ± 0.0098 | 0.9536 ± 0.0061 | 0.9550 ± 0.0068 |
Nonlinear feature | 0.8915 ± 0.0142 | 0.9073 ± 0.0161 | 0.8983 ± 0.0107 | 0.8992 ± 0.0107 | 0.9619 ± 0.0060 | 0.9583 ± 0.0072 | |
LDA-GMCB | 0.9060 ± 0.0135 | 0.9163 ± 0.0121 | 0.9105 ± 0.0094 | 0.9110 ± 0.0092 | 0.9657 ± 0.0060 | 0.9605 ± 0.0086 |