Table 4 Performance comparison of DL models with the proposed model.
Feature Extractor | Classifier | Accuracy (%) | Precision (%) | Recall (%) | F1-Score (0–1) | ZOL (0–1) | Methews Coefficient | Kappa Statistics |
|---|---|---|---|---|---|---|---|---|
VGG16 | Decision Tree | 52 | 53 | 52 | 0.52 | 0.481433 | 0.504781 | 0.504561 |
Logistic Regression | 89 | 92 | 91 | 0.91 | 0.107471 | 0.889452 | 0.8894 | |
Random Forest | 82 | 91 | 82 | 0.86 | 0.175623 | 0.819558 | 0.818744 | |
Extra Trees | 82 | 92 | 81 | 0.86 | 0.177807 | 0.817684 | 0.816322 | |
Hist Gradient Boosting | 86 | 91 | 86 | 0.88 | 0.139799 | 0.856322 | 0.855894 | |
Multi Layered Perceptron | 63 | 63 | 60 | 0.61 | 0.371341 | 0.617851 | 0.61765 | |
VGG19 | Decision Tree | 51 | 51 | 50 | 0.5 | 0.492355 | 0.493621 | 0.493427 |
Logistic Regression | 88 | 90 | 89 | 0.89 | 0.118829 | 0.877794 | 0.877713 | |
Random Forest | 79 | 88 | 78 | 0.82 | 0.207951 | 0.786128 | 0.785316 | |
Extra Trees | 80 | 90 | 77 | 0.82 | 0.203145 | 0.791253 | 0.790073 | |
Hist Gradient Boosting | 23 | 27 | 26 | 0.23 | 0.773263 | 0.210248 | 0.207227 | |
Multi Layered Perceptron | 64 | 64 | 59 | 0.6 | 0.36173 | 0.627556 | 0.627236 | |
ResNet 152 | Decision Tree | 28 | 26 | 26 | 0.26 | 0.721979 | 0.25679 | 0.256733 |
Logistic Regression | 67 | 71 | 69 | 0.7 | 0.327058 | 0.663184 | 0.66305 | |
Random Forest | 56 | 74 | 51 | 0.57 | 0.440455 | 0.544877 | 0.542807 | |
Extra Trees | 55 | 75 | 48 | 0.55 | 0.453152 | 0.531971 | 0.529031 | |
Hist Gradient Boosting | 61 | 75 | 58 | 0.63 | 0.388792 | 0.598489 | 0.596998 | |
Multi Layered Perceptron | 42 | 41 | 36 | 0.37 | 0.578371 | 0.402491 | 0.401788 | |
InceptionResNet | Decision Tree | 25 | 22 | 22 | 0.22 | 0.74574 | 0.233011 | 0.232868 |
Logistic Regression | 65 | 69 | 67 | 0.68 | 0.349061 | 0.6406 | 0.640503 | |
Random Forest | 51 | 66 | 44 | 0.49 | 0.487112 | 0.496484 | 0.49406 | |
Extra Trees | 50 | 70 | 43 | 0.49 | 0.503713 | 0.479194 | 0.475773 | |
Hist Gradient Boosting | 50 | 40 | 20 | 0.01 | 0.95107 | 0.023288 | 0.008262 | |
Multi Layered Perceptron | 40 | 36 | 32 | 0.32 | 0.60332 | 0.376451 | 0.375507 | |
Mobile Net | Decision Tree | 21 | 19 | 18 | 0.18 | 0.790738 | 0.187306 | 0.187208 |
Logistic Regression | 56 | 58 | 57 | 0.57 | 0.442551 | 0.544893 | 0.544743 | |
Random Forest | 44 | 59 | 37 | 0.41 | 0.563565 | 0.41797 | 0.415247 | |
Extra Trees | 42 | 61 | 36 | 0.4 | 0.576234 | 0.404824 | 0.401376 | |
Hist Gradient Boosting | 48 | 63 | 44 | 0.49 | 0.515946 | 0.467625 | 0.465104 | |
Multi Layered Perceptron | 35 | 33 | 28 | 0.29 | 0.649192 | 0.329995 | 0.329104 | |
Dense Net | Decision Tree | 34 | 32 | 31 | 0.31 | 0.656743 | 0.324706 | 0.324571 |
Logistic Regression | 77 | 80 | 78 | 0.79 | 0.231173 | 0.762368 | 0.762249 | |
Random Forest | 64 | 79 | 59 | 0.64 | 0.359457 | 0.630222 | 0.628265 | |
Extra Trees | 63 | 80 | 58 | 0.64 | 0.366025 | 0.62359 | 0.621119 | |
Hist Gradient Boosting | 90 | 16 | 60 | 0.06 | 0.911559 | 0.068907 | 0.050004 | |
Multi Layered Perceptron | 49 | 45 | 43 | 0.43 | 0.507881 | 0.476921 | 0.476427 | |
Multi Data | Decision Tree | 99 | 99 | 98 | 0.99 | 0.009632 | 0.99009 | 0.990083 |
Logistic Regression | 100 | 100 | 100 | 1 | 0.001313 | 0.998648 | 0.998648 | |
Random Forest | 100 | 100 | 100 | 1 | 0.000876 | 0.999099 | 0.999099 | |
Extra Trees | 100 | 100 | 100 | 1 | 0.000438 | 0.999549 | 0.999549 | |
Hist Gradient Boosting | 100 | 100 | 100 | 1 | 0.003065 | 0.996846 | 0.996845 | |
Multi-Layered Perceptron | 98 | 97 | 97 | 0.97 | 0.0162 | 0.983429 | 0.983323 |