Table 10 Effect of adversarial training on retrieval performance for normal and adversarial queries across different backbone networks and Hashcode lengths on the K-CT dataset.
Backbone Network | Query Type | Adversarial Training | Hashcode Length | |||
|---|---|---|---|---|---|---|
8 bits | 16 bits | 32 bits | 64 bits | |||
AlexNet | Normal | No | 0.91 | 0.95 | 0.93 | 0.91 |
Adversary | No | 0.09 | 0.14 | 0.10 | 0.11 | |
Normal | Yes | 0.81 | 0.86 | 0.86 | 0.80 | |
Adversary | Yes | 0.81 | 0.82 | 0.75 | 0.72 | |
VGG 16 | Normal | No | 0.89 | 0.92 | 0.92 | 0.90 |
Adversary | No | 0.11 | 0.12 | 0.16 | 0.13 | |
Normal | Yes | 0.82 | 0.86 | 0.91 | 0.89 | |
Adversary | Yes | 0.81 | 0.85 | 0.81 | 0.75 | |
DenseNet 121 | Normal | No | 0.90 | 0.92 | 0.89 | 0.86 |
Adversary | No | 0.12 | 0.17 | 0.19 | 0.20 | |
Normal | Yes | 0.89 | 0.90 | 0.87 | 0.86 | |
Adversary | Yes | 0.86 | 0.89 | 0.83 | 0.77 | |
DeneNet 201 | Normal | No | 0.91 | 0.94 | 0.90 | 0.89 |
Adversary | No | 0.11 | 0.11 | 0.24 | 0.26 | |
Normal | Yes | 0.90 | 0.92 | 0.88 | 0.87 | |
Adversary | Yes | 0.88 | 0.88 | 0.85 | 0.78 | |
ConvNeXt (Ours) | Normal | No | 0.93 | 0.95 | 0.92 | 0.91 |
Adversary | No | 0.11 | 0.11 | 0.11 | 0.17 | |
Normal | Yes | 0.92 | 0.94 | 0.92 | 0.91 | |
Adversary | Yes | 0.85 | 0.89 | 0.83 | 0.79 | |