Table 1 Parameter values for (\(P_1\)) and (\(P_2\)) groups of patients26.

From: Feedback design to measure the effect of therapies in controlling cancer using the fractional approach

Parameters

P1

P2

Units

a

\(4.31 \times 10^{-1}\)

\(4.31 \times 10^{-1}\)

\(day^{-1}\)

b

\(4.31 \times 10^{-1}\)

\(4.31 \times 10^{-1}\)

\(cells^{-1}\)

c

\(6.41 \times 10^{-11}\)

\(6.41 \times 10^{-11}\)

\(cell^{-1} day^{-1}\)

d

2.34

1.88

\(day^{-1}\)

e

\(2.08 \times 10^{7}\)

\(2.08 \times 10^{7}\)

\(day^{-1}\)

l

2.09

1.81

None

f

\(4.12 \times 10^{-2}\)

\(4.12 \times 10^{-2}\)

\(day^{-1}\)

g

\(1.25 \times 10^{-2}\)

\(1.25 \times 10^{-2}\)

\(day^{-1}\)

h

\(2.02 \times 10^{7}\)

\(2.02 \times 10^{7}\)

\(cells^2\)

j

\(2.49 \times 10^{-2}\)

\(2.49 \times 10^{-2}\)

\(day^{-1}\)

k

\(3.66 \times 10^{7}\)

\(5.66 \times 10^{7}\)

\(cell^{2}\)

m

\(2.04 \times 10^{-1}\)

9.12

\(day^{-1}\)

q

\(1.42 \times 10^{-6}\)

\(1.59 \times 10^{-6}\)

\(cell^{-1} day^{-1}\)

p

\(3.42 \times 10^{-6}\)

\(3.59 \times 10^{-6}\)

\(cell^{-1} day^{-1}\)

s

\(8.39 \times 10^{-2}\)

\(5.12 \times 10^{-6}\)

None

\(r_1\)

\(1.10 \times 10^{-7}\)

\(1.10 \times 10^{-7}\)

\(cell^{-1} day^{-1}\)

\(r_2\)

\(6.50 \times 10^{-11}\)

\(6.50 \times 10^{-11}\)

\(cell^{-1} day^{-1}\)

\(K_T\)

\(9 \times 10^{-1}\)

\(9 \times 10^{-1}\)

\(day^{-1}\)

\(K_N=K_L=K_C\)

\(6 \times 10^{-1}\)

\(6 \times 10^{-1}\)

\(day^{-1}\)

\(\alpha\)

\(7.50 \times 10^{8}\)

\(5 \times 10^{8}\)

\((cell).day^{-1}\)

\(\beta\)

\(1.20 \times 10^{-2}\)

\(8 \times 10^{-3}\)

\(day^{-1}\)

\(\gamma\)

\(9 \times 10^{-1}\)

\(9 \times 10^{-1}\)

\(day^{-1}\)

u

\(3.00 \times 10^{-10}\)

\(3.00 \times 10^{-10}\)

\(cell^{-2} day^{-1}\)

\(p_1\)

\(1.25 \times 10^{-1}\)

\(1.25 \times 10^{-1}\)

\(day^{-1}\)

\(g_1\)

\(2 \times 10^{7}\)

\(2 \times 10^{7}\)

\(cell^{2}\)

\(\mu _1\)

\(1 \times 10^{1}\)

\(1 \times 10^{1}\)

\(day^{-1}\)