Table 2 Table presenting the numerical comparison on the Ottawa dataset, with units in percentage (%). The top-performing values are marked in bold, while those ranking second are underlined.

From: Heterogeneous dual-decoder network for road extraction in remote sensing images

Method

Source

IoU

Precision

Recall

F1

mIoU

D-LinkNet15

CVPR 18

86.83

94.28

91.65

92.95

92.35

NL-LinkNet16

GRSL 21

87.85

93.54

93.52

93.53

92.93

CoANet36

TIP 21

90.36

95.12

94.75

94.93

94.40

DBRANet24

GRSL 22

89.04

95.10

93.33

94.20

93.64

DDU-Net18

TGRS 22

90.17

94.65

95.01

94.83

94.29

DSCNet20

ICCV 23

88.78

93.16

94.98

94.06

93.47

CFRNet30

GRSL 24

90.56

95.74

94.36

95.04

94.52

OARENet39

TGRS 24

90.92

95.34

95.14

95.24

94.73

Swin-GAT42

RS 25

91.04

95.79

94.83

95.31

94.80

CGCNet43

TGRS 25

90.81

95.31

95.06

95.19

94.67

HDDNet

Ours

91.85

96.20

95.31

95.75

95.27