Table 3 Table presenting the numerical comparison on the CHN6-CUG dataset, with units in percentage (%). The top-performing values are marked in bold, while those ranking second are underlined.

From: Heterogeneous dual-decoder network for road extraction in remote sensing images

Method

Source

IoU

Precision

Recall

F1

mIoU

D-LinkNet15

CVPR 18

60.98

78.13

71.67

74.76

77.78

NL-LinkNet16

GRSL 21

63.52

76.98

78.41

77.69

79.12

CoANet36

TIP 21

65.68

79.84

78.74

79.29

80.43

DBRANet24

GRSL 22

62.07

78.87

72.53

75.56

78.42

DDU-Net18

TGRS 22

65.18

79.50

78.36

78.92

80.13

DSCNet20

ICCV 23

64.12

78.60

75.60

77.07

79.55

CFRNet30

GRSL 24

64.19

79.72

76.70

78.18

79.58

OARENet39

TGRS 24

66.18

80.17

79.13

79.65

80.75

Swin-GAT42

RS 25

65.99

80.70

78.35

79.51

80.62

CGCNet43

TGRS 25

66.04

80.35

76.58

78.42

80.68

HDDNet

Ours

67.27

81.37

79.52

80.44

81.36