Table 3 Comparison of the mean absolute distance errors (km) predicted by multiple deep-learning models. Bold values highlight the best performance.

From: Prediction of surface drifter trajectories in the South China sea using deep learning

 

6 h

12 h

18 h

24 h

 

RMSE

MAE

RMSE

MAE

RMSE

MAE

RMSE

MAE

RNN

0.1423

12.7105

0.1552

14.3501

0.2237

20.5022

0.2493

22.7264

LSTM

0.1249

10.9243

0.1588

13.7308

0.2138

18.1094

0.2512

21.6609

GRU

0.1914

16.9772

0.2451

22.2429

0.2540

22.2866

0.2903

24.8279

Transformer

0.1640

14.2004

0.2508

24.2498

0.3423

31.8949

0.2830

24.7458

Informer

0.1046

8.6226

0.1016

8.4038

0.1418

11.7772

0.1962

15.5273