Table 3 Performance comparison of the proposed model and existing models. Bold texts represent the proposed model.

From: DANet a lightweight dilated attention network for malaria parasite detection

Model

ACC (%)

PR (%)

SE (%)

SP (%)

F1 (%)

Parameter Count (M)

EfficientNetB026

94.45

92.85

95.91

93.07

94.36

5.30

ResNet15226

94.29

91.15

97.25

91.67

94.10

115.6

NASNetMobile26

93.21

92.34

93.98

92.48

93.16

5.33

InceptionV326

93.02

90.46

95.33

90.92

92.83

25.00

InceptionResNetV226

94.03

91.87

96.02

92.21

93.90

55.00

Yang F, et al.27

93.46

82.73

94.25

98.39

80.81

–

VGG1628

95.62

97.28

92.17

65.02

94.66

1383

VGG1928

96.31

95.75

95.02

63.49

95.39

1436

Detailed CNN29

97.24

96.10

–

98.47

97.24

16.79

Qayyum A. et al.30

96.05

95.80

96.33

–

96.06

–

ResNet5024

88.47

–

89.61

87.31

88.57

23.6

DenseNet12131

90.94

–

92.51

89.33

91.03

7.04

DPN9232

87.88

–

86.81

88.98

87.85

37.7

DCNN(Falcon)-TL33

93.00

93.00

  

93.00

–

VGG16-SVM22

93.01

84.47

94.10

94.90

87.05

1383

Mosquito-Net24

96.60

93.00

97.60

95.80

96.70

7.47

Alex-Net24

92.70

93.20

93.90

93.10

93.90

61.1

Xception-Net24

88.90

93.00

94.10

84.10

88.90

22.8

DLRFNet34

94.32

94.68

  

93.78

–

CNN-LSTM-BiLSTM35

96.20

97.00

–

–

97.00

–

Hybrid CapsNet36

99.07

97.60

–

97.30

97.40

–

37

97.36

–

97.46

95.00

97.39

–

MosquitoNet38

96.97

–

–

–

–

–

CNN Model39

95.00

94.50

–

–

94.00

–

Transformer-CNN

94.63

91.48

98.32

94.77

27.66

 

DANet-H+LogSoftMax

97.65

97.45

97.93

97.34

97.69

2.3

DANet-S+Sigmoid

97.75

98.89

96.65

96.60

97.73

2.3

DANet-S+LogSoftMax

97.95

97.76

98.07

97.87

97.86

2.3