Table 2 Parameter Settings for Various Optimization Algorithms.

From: Hybrid Young’s double-slit experiment and differential evolution for enhanced photovoltaic parameter estimation

Common Parameters for All Algorithms

Parameter

Setting/Value

Population Size (N)

30 (for all algorithms)

Maximum Iterations (MaxIter)

500

Algorithm-Specific Parameters

Young’s Double-Slit Experiment (YDSE)

\(\bullet\) Scaling Factor (F): 0 - 1

\(\bullet\) Population Size: Problem-specific

\(\bullet\) Iterations: Predefined, depending on problem complexity

Differential Evolution (DE)

\(\bullet\) Mutation Factor (F): 0.5 - 1

\(\bullet\) Crossover Rate (CR): 0.7 - 0.9

\(\bullet\) Population Size: 50 - 100

Ant Lion Optimizer (ALO)

\(\bullet\) Random Walk Parameters: Fixed or random step size for ant’s walk

\(\bullet\) Exploitation Mechanism: Ant lion traps and random walks

\(\bullet\) Selection Mechanism: Roulette wheel selection

Sooty Tern Optimization Algorithm (STOA)

\(\bullet\) Exploitation Mechanism: Guided by the best sooty tern and nearest predator

\(\bullet\) Selection Mechanism: Determined by distance to the best sooty tern

Rat Swarm Optimizer (RSO)

\(\bullet\) Swarm Size: 30 - 100

\(\bullet\) Behavioral Parameters: Control exploration and exploitation

\(\bullet\) Selection Mechanism: Based on fitness and proximity