Table 7 Performance comparison with alternative ML architectures.

From: Intelligent optimization of track and field teaching using machine learning and wearable sensors

Architecture

F1-score

MAE

Training time

Parameters

Proposed CNN-BiLSTM

0.94 ± 0.01

0.083

4.2 h

2.3 M

Transformer-based

0.89 ± 0.02

0.107

8.7 h

5.1 M

Standard LSTM

0.86 ± 0.02

0.124

3.1 h

1.8 M

Multimodal fusion

0.91 ± 0.01

0.095

6.3 h

3.7 M

Random forest only

0.82 ± 0.03

0.156

1.8 h

0.9 M

3D-CNN

0.88 ± 0.02

0.112

5.4 h

4.2 M