Table 2 Performance of the proposed model is evaluated in comparison to other existing models.

From: A multi stage deep learning model for accurate segmentation and classification of breast lesions in mammography

Classifier

Dataset

AUC-ROC

Recall

Dice

Co-efficient

F1-Score

IOU

P Precision

O ACC (%)

CNN design10

BRATS2013

 

76.85

 

76.85%

60.12%

 

79.8

VGG + ConvNets11

BRATS2013

91.56

91.56

78.21

91.56%

78.21%

94.0

94

Support Vector Machine (SVM) classifier12

Harvard, RIDER

89.17

89.17

76.58

89.17%

76.58%

91.0

93.1

NNU-Net13

BraTS 2020

89.76

89.76

74.56

89.76%

74.56%

90.0

88.9

SVM + CNN14

BRATS 2015

96.38

96.38

83.64

96.38%

83.64%

97.0

96.4

RGA-Unet15

TCIA

95.14

95.14

84.21

95.14%

84.21%

96.0

95.04

InceptionResNetV216

BraTS 2020

96.32

96.32

82.35

96.32%

82.35%

95.0

96

VGG-1617

BraTS 2020

87.25

87.25

73.32

87.25%

73.32%

89.0

88.9

U-Net++18

Diverse set of ultrasound images

88.25

88.25

76.58

88.25%

76.58%

90.0

89.25

3D U-Net19

BraTS 2020

84.97

84.97

71.25

84.97%

71.25%

86.0

86

Segmentation network U-Net20

TCIA

93.67

93.67

81.25

93.67%

81.25%

95.0

94.57

ResNet50-Unet21

CVC Clinic-DB

90.25

90.25

78.23

90.25%

78.23%

92.0

91.2

CNN-Based Inception-V322

TCIA

92.65

92.65

78.89

92.65%

78.89%

94.0

95

Hyperparameter-Tuned CNN23

MRI datasets

91.45

91.45

77.85

91.45%

77.85%

93.0

94

RCS-YOLO24

Br35H dataset

93.56

93.56

79.65

93.56%

79.65%

95.0

94.6

AlexNet-SVM and AlexNet-KNN25

Br35H dataset

90.31

90.31

76.89

90.31%

76.89%

92.0

91.5

MSDLM Model

CBIS-DDSM

91.26

91.26

85.61

91.26%

85.61%

98.0

97.6