Table 4 Comparison of performance metrics for different non-optimal parameter selection approaches with \(C_cBPS\) approach among all datasets.

From: Energy consumption minimisation at edge node using \(C_cBPS\) approach in predicting sensor parameters in WSNs

Dataset

MSE

rMSE

MAE

\(R^2\) Score

Original

G.Descent

CHI-S

CcBPS

Original

G.Descent

CHI-S

CcBPS

Original

G.Descent

CHI-S

CcBPS

Original

G.Descent

CHI-S

CcBPS

IESD-15

1.00

1.84

1.29

\({\textbf {0.88}}\)

0.86

1.10

0.99

\({\textbf {0.83}}\)

0.64

0.98

1.30

\({\textbf {0.56}}\)

\({\textbf {0.96}}\)

0.94

0.85

\({\textbf {0.96}}\)

IESD-30

1.13

2.76

1.86

\({\textbf {0.95}}\)

0.95

1.48

1.21

\({\textbf {0.87}}\)

0.72

1.04

0.88

\({\textbf {0.63}}\)

0.93

0.83

0.89

\({\textbf {0.95}}\)

IESD-1H

2.43

3.47

2.47

\({\textbf {2.29}}\)

1.31

1.56

1.31

\({\textbf {1.26}}\)

1.09

1.77

1.10

\({\textbf {1.02}}\)

0.83

0.76

0.82

\({\textbf {0.85}}\)

IESD-4H

3.45

3.70

3.53

\({\textbf {3.33}}\)

1.34

1.40

1.37

\({\textbf {1.33}}\)

1.03

1.03

1.01

\({\textbf {1.01}}\)

\({\textbf {0.76}}\)

0.72

0.75

\({\textbf {0.76}}\)

IESD-8H

2.21

3.87

2.83

\({\textbf {1.93}}\)

1.09

1.43

1.23

\({\textbf {1.02}}\)

0.85

0.89

0.92

\({\textbf {0.81}}\)

0.76

0.60

0.72

\({\textbf {0.79}}\)

IESD-24H

1.49

2.81

1.42

\({\textbf {1.32}}\)

0.74

0.94

0.72

\({\textbf {0.69}}\)

0.59

0.78

0.58

\({\textbf {0.59}}\)

0.84

0.74

0.84

\({\textbf {0.85}}\)

BTM-L-B

0.18

1.59

0.33

\({\textbf {0.08}}\)

0.33

1.16

0.47

\({\textbf {0.23}}\)

0.29

0.91

0.37

\({\textbf {0.18}}\)

0.89

0.73

0.78

\({\textbf {0.92}}\)

IITM-D

0.17

1.50

1.60

\({\textbf {0.38}}\)

0.38

0.79

0.76

\({\textbf {0.36}}\)

0.24

0.41

0.28

\({\textbf {0.21}}\)

0.77

0.56

0.68

\({\textbf {0.86}}\)

AN-RSPCB

0.85

1.01

0.70

\({\textbf {0.60}}\)

0.77

0.88

0.76

\({\textbf {0.67}}\)

0.44

0.71

0.72

\({\textbf {0.44}}\)

0.87

0.72

0.71

\({\textbf {0.90}}\)