Table 10 Comparison between the proposed prediction approach and previous works.
Source | Prediction | Model | Features | Results | Year | |||
|---|---|---|---|---|---|---|---|---|
First Proposed Prediction Approach | Initial SoC Required SoC | FDNN | Distance, Road Characteristics, and Weather Data | Index | SoC-In | SoC-Req | 2025 | |
SMAPE | 0.0007 | 0.00015 | ||||||
MAE | 0.00015 | 0.00013 | ||||||
MSE | 6.8*10−7 | 1.8*10−7 | ||||||
RMSE | 0.00083 | 0.00043 | ||||||
R2 | 1 | 1 | ||||||
Second Proposed Prediction Approach | Initial SOC Required SOC Arrival Time Departure Time | FDNN | Distance, Road Characteristics, and Weather Data | Index | SoC-In | SoC-Req | 2025 | |
SMAPE | 0.00044 | 0.00018 | ||||||
MAE | 0.00017 | 0.00015 | ||||||
MSE | 5*10−7 | 4.2*10−7 | ||||||
RMSE | 0.00071 | 0.00065 | ||||||
R2 | 1 | 1 | ||||||
Ref.31 | SoC | ANN SVM Linear GPR Ensemble Boosting Ensemble Bagging | Battery Capacity Battery Voltage Battery Current and Battery Temperature | MSE | 0.00054 | 2021 | ||
MAE | 0.00027 | |||||||
RMSE | 0.02329 | |||||||
R2 | 0.999 | |||||||
Ref.32 | SL, Energy Consumption | RF, SVM, XGBoost, & ANN | HCD, Weather, Traffic, Events Data | SMAPE | 9.92% | 2021 | ||
MAE | 66.5 min | |||||||
SMAPE | 11.6% Consumption | |||||||
R2 | 0.7 | |||||||
Ref.33 | Departure Time | XGBoost | HCD, Vehicle Type, Charging Location | MAE | 82 min | 2020 | ||
Ref.34 | Energy Requirements | XGBoost | HCD | MAE | 4.6 kWh | 2020 | ||
R2 | 0.52 | |||||||
Ref.35 | SL, Energy Consumption | Ensemble Model of SVM, RF, & DKDE | HCD | SMAPE | 10.4% Duration | 2019 | ||
7.5% Consumption | ||||||||