Table 3 Comparison of predictive performance of the five most commonly used machine learning models.

From: Machine learning models using dual-phase CT radiomics for early detection of PRISm

Dataset

Models

AUC(95%CI)

ACC

Sensitivity

Specificity

PPV

NPV

Training cohort

LR

0.901(0.845–0.956)

0.836

0.750

0.917

0.894

0.797

Random Forest

0.942(0.903–0.981)

0.871

0.929

0.817

0.825

0.925

XGBoost

0.985(0.969–0.999)

0.931

0.929

0.933

0.929

0.933

SVM

0.901(0.845–0.957)

0.836

0.804

0.867

0.849

0.825

MLP

0.845(0.777–0.913)

0.750

0.714

0.783

0.755

0.746

Internal validation cohort

LR

0.819(0.680–0.957)

0.830

0.750

0.871

0.750

0.871

Random Forest

0.825(0.692–0.957)

0.809

0.687

0.871

0.733

0.844

XGBoost

0.756(0.611–0.901)

0.745

0.750

0.742

0.6

0.852

SVM

0.806(0.649–0.964)

0.83

0.812

0.613

0.520

0.864

MLP

0.833(0.743–0.924)

0.738

0.710

0.929

0.985

0.325

External validation cohort

LR

0.817(0.695–0.940)

0.916

0.968

0.571

0.937

0.727

Random Forest

0.666(0.514–0.818)

0.486

0.430

0.857

0.952

0.185

XGBoost

0.638(0.474–0.801)

0.654

0.654

0.714

0.937

0.233

SVM

0.815(0.696–0.934)

0.626

0.581

0.929

0.982

0.250

MLP

0.778(0.652–0.903)

0.794

0.774

0.929

0.986

0.382

  1. AUC area under the ROC curve, CI confidential interval, ACC accuracy, PPV positive predictive value, NPV negative predictive value, LR logistic regression, XGBoost extreme gradient boosting, SVM support vector machine, MLP multilayer perceptron.