Table 1 Describe the parameters’ constants in the silicon (Si) SI units.

From: Stochastic analysis and Monte Carlo simulation of magneto–opto–acoustic wave propagation in nonlocal semiconductor excitation

Symbol

Si

Unit

\(\lambda\)

\(6.4 \times 10^{10}\)

\({\text{N/m}}^{{2}}\)

\(\mu\)

\(5.1 \times 10^{10}\)

\({\text{N/m}}^{{2}}\)

\(\rho\)

\(2330\)

\({\text{kg/m}}^{{3}}\)

\(T_{0}\)

\(300\)

\({\text{K}}\)

\(\tau\)

\(5 \times 10^{ - 5}\)

\({\text{s}}\)

\(D_{E}\)

\(2.5 \times 10^{ - 3}\)

\({\text{kg/m}}^{{3}}\)

\(E_{g}\)

\(1.11 \times 10^{ - 19}\)

\(J\)

\(d_{n}\)

\(- \;9 \times 10^{ - 31}\)

\({\text{m}}^{{3}}\)

\(\alpha_{t}\)

\(2.6 \times 10^{ - 6}\)

\({\text{K}}^{{ - {1}}}\)

\(C_{e}\)

\(695\)

\({\text{J/(kg}}\,{\text{.K)}}\)

\(k\)

\(150\)

\({\text{W}}\,.{\text{m}}^{{ - {1}}} {\text{.K}}^{{ - {1}}}\)

\(P_{0}\)

\(1\)

 

\(N_{0}\)

\(1\)

 

\(\varepsilon_{0}\)

\({{10^{ - 9} } \mathord{\left/ {\vphantom {{10^{ - 9} } {36\pi }}} \right. \kern-0pt} {36\pi }}\)

\(F/m\)

\(\mu_{0}\)

\(1.4\pi \times 10^{ - 7}\)

\({H \mathord{\left/ {\vphantom {H m}} \right. \kern-0pt} m}\)

\(H_{0}\)

\({{10^{7} } \mathord{\left/ {\vphantom {{10^{7} } {4\pi }}} \right. \kern-0pt} {4\pi }}\)

\({A \mathord{\left/ {\vphantom {A m}} \right. \kern-0pt} m}\)

\(C_{s}\)

\(8430\)

\({m \mathord{\left/ {\vphantom {m s}} \right. \kern-0pt} s}\)

\(C_{r}\)

\(1.666\)

 

\(\beta\)

\(2.56 \times 10^{ - 6}\)

 

\(\sigma_{0}\)

\(- 5\)