Table 2 Ablation study of GIT-GuardNet components.

From: Graph-augmented multi-modal learning framework for robust android malware detection

Model variant

Accuracy

F1-Score

AUC-ROC

Precision

Recall

Full GIT-GuardNet

99.85

99.85

99.94

99.89

99.81

No Graph Module

98.94

98.91

99.23

98.85

98.97

No Temporal Module

98.61

98.57

98.96

98.66

98.49

No Cross-Attention Fusion

97.73

97.68

97.90

97.60

97.76

Static Only (Transformer)

96.98

96.87

97.88

96.73

97.02