Table 4 Hyperparameters configuration for machine learning models.
Model | Hyperparameter | Value |
|---|---|---|
LR | Penalty/regularization | None (Ordinary least square) |
Fit intercept | True | |
Normalize | False | |
DTR | Criterion | Squared error |
Maximum depth | 6 | |
Minimum samples split | 4 | |
Minimum samples leaf | 2 | |
Random state | 42 | |
RF | Number of trees | 100 |
Maximum depth | 10 | |
Minimum samples split | 2 | |
Minimum samples leaf | 1 | |
Bootstrap | True | |
Random state | 42 | |
GBM | Learning rate | 0.1 |
Number of estimators | 100 | |
Maximum depth | 3 | |
Subsample | 1 | |
Loss function | Squared error | |
Random state | 42 | |
XGBoost | Learning rate | 0.1 |
Number of estimators | 100 | |
Maximum depth | 5 | |
Subsample | 0.8 | |
Col sample_ by tree | 0.8 | |
Gamma | 0 | |
Random state | 42 | |
SVR | Kernel | Radial basis function (RBF) |
C (Regularization parameter) | 1 | |
Gamma | ‘Scale’ | |
Epsilon | 0.1 | |
GPR | Kernel | RBF + White Kernel |
Alpha (noise level) | 1e−10 | |
Normalizer | True | |
KR | Kernel | RBF |
Alpha | 1 | |
Gamma | 0.1 | |
MLP | Hidden Layer Sizes | (10,) |
Activation Function | ReLU | |
Solver | Adam | |
Learning Rate | ‘Constant’ | |
Learning Rate Init | 0.001 | |
Maximum Iterations | 1000 | |
Random State | 42 |