Table 1 The diagnostic performance for comparisons. All models are being trained using ImageNet_1k pretrained weights. The performance improvement is significant for \(p<0.05\), highly significant for \(p<0.01\), then extremely significant for \(p<0.001\).

From: Multimodal-based auxiliary diagnosis for pediatric community acquired pneumonia

CXR Model

Accuracy (95% CI)

Precision (95% CI)

Recall (95% CI)

F1-Score (95% CI)

GFLOPs

t-test

MNv3-L

0.829 (0.821 - 0.837)

0.838 (0.813 - 0.863)

0.819 (0.787 - 0.852)

0.827 (0.818 - 0.837)

2.973

\(p<0.01\)

Dense-121

0.834 (0.822 - 0.847)

0.845 (0.824 - 0.865)

0.827 (0.782 - 0.872)

0.834 (0.817 - 0.851)

15.130

\(p<0.05\)

ViT_b_16

0.796 (0.782 - 0.809)

0.767 (0.728 - 0.806)

0.847 (0.806 - 0.889)

0.808 (0.800 - 0.816)

58.721

\(p<0.001\)

MaxViT_t

0.823 (0.811 - 0.834)

0.861 (0.830 - 0.892)

0.774 (0.738 - 0.810)

0.814 (0.800 - 0.828)

30.117

\(p<0.01\)

STv2_s

0.818 (0.807 - 0.830)

0.823 (0.803 - 0.843)

0.813 (0.785 - 0.841)

0.817 (0.805 - 0.830)

15.568

\(p<0.01\)

Effv2_m

0.849 (0.839 - 0.859)

0.869 (0.844 - 0.894)

0.826 (0.800 - 0.851)

0.846 (0.836 - 0.856)

28.410

\(p>0.5\)

ResNet-50

0.846 (0.838 - 0.854)

0.837 (0.809 - 0.866)

0.863 (0.830 - 0.897)

0.849 (0.842 - 0.856)

21.585

-