Table 2 Hyperparameters for deep CNN Classifier.

From: Integrating image processing with deep convolutional neural networks for gene selection and cancer classification using microarray data

Layer

Filters

Kernel

Input size

Output size

Description

Convolutional 1

64

3 × 3

128 × 128 × 1

128 × 128 × 64

Extracts low-

level features

from input

data

Max Pooling 1

 

2 × 2

128 × 128 × 64

64 × 64 × 64

Reduces

spatial

dimensions,

retains key

features

Convolutional 2

128

3 × 3

64 × 64 × 64

64 × 64 × 128

Further

feature

extraction

with increased

depth

Max Pooling 2

 

2 × 2

64 × 64 × 128

32 × 32 × 128

Down

sampling to

reduce

dimensionality

Convolutional 3

256

3 × 3

32 × 32 × 128

32 × 32 × 256

Advanced

feature

extraction

from deeper

layers

Max Pooling 3

 

2 × 2

32 × 32 × 256

16 × 16 × 256

Further

reduction in

spatial size

Convolutional 4

512

3 × 3

16 × 16 × 256

16 × 16 × 512

Higher-level

feature

extraction

Max Pooling 4

 

2 × 2

16 × 16 × 512

8 × 8 × 512

Continues

reducing

dimensionality

Convolutional 5

512

3 × 3

8 × 8 × 512

8 × 8 × 512

Continues

extracting

features at

a fine level

Max Pooling 5

 

2 × 2

8 × 8 × 512

4 × 4 × 512

Reduces

spatial

dimensions

for

classification

Convolutional 6

1024

3 × 3

4 × 4 × 512

4 × 4 × 1024

Final feature

extraction

with deeper

network

Max P

ooling 6

 

2 × 2

4 × 4 × 1024

2 × 2 × 1024

Reduces

dimensions to

finalize

feature

extraction

Dropout

  

2 × 2 × 1024

2 × 2 × 1024

Regularization

to prevent

overfitting

Flatten

  

2 × 2 × 1024

1 × 4096

Flattens the

feature map

into a 1D vector

Fully

connected

4096

 

1 × 4096

1 Ă— N

Final

classification

layer (N = 

number of

classes)