Table 4 Comparison with cutting-edge segmentation methods on the BUSI dataset.

From: A hybrid attention network for accurate breast tumor segmentation in ultrasound images

Method

Parameters (Million)

\(J_{i}\)

\(D_{c}\)

\(S_{n}\)

\(A_{cc}\)

\(P_{r}\)

\(S_{p}\)

BGRA-GSA57

101.34 M

68.75

81.43

84.14

96.34

79.01

97.63

AAU-Net31

29.2 M

69.26

78.18

86.06

-

81.17

99.17

MCRNet58

26.63 M

69.94

82.31

81.65

96.78

-

-

Swin-unet59

27.3 M

74.16

79.45

83.16

96.55

-

97.34

Eh-former60

184.2 M

76.37

84.6

87.74

-

-

98.17

U-Net15

34.51 M

76.54

83.13

82.83

97.91

83.94

98.81

BGRD-TransUNet61

109.65 M

76.77

85.08

87.62

97.14

85.89

-

Attention U-Net62

8.14 M

77.89

85.96

85.80

97.85

86.65

98.54

Unet++63

9.04 M

81.09

88.11

87.29

98.57

89.53

99.18

DDRA-Net64

5.46 M

89.23

75.32

92.32

-

95.02

-

HA-Net (Proposed)

15.43 M

94.75

97.28

97.15

99.74

97.42

99.84