Table 1 Layer configuration details in the CNN models of the proposed stacked ensemble.

From: Using ensemble learning for classifying artistic styles in traditional Chinese woodcuts

Layer

\(\:\varvec{C}\varvec{N}{\varvec{N}}_{1}\:\left(\varvec{P}\varvec{e}\varvec{r}\varvec{i}\varvec{o}\varvec{d}\right)\)

\(\:\varvec{C}\varvec{N}{\varvec{N}}_{2}\left(\varvec{S}\varvec{t}\varvec{y}\varvec{l}\varvec{e}\right)\)

\(\:\varvec{C}\varvec{N}{\varvec{N}}_{3}\left(\varvec{S}\varvec{t}\varvec{y}\varvec{l}\varvec{e}\right)\)

Input

200 × 200 × 2

200 × 200 × 2

265

Convolution1

2D (9 × 9,8)

2D (10 × 10,8)

1D (8,16)

Activation1

Leaky ReLU

Leaky ReLU

ReLU

Pooling1

2D Avg. pooling (2 × 2)

2D Avg. pooling (2 × 2)

1D Max pooling (2)

Convolution2

2D (7 × 7,16)

2D (8 × 8,16)

1D (6,24)

Activation2

Leaky ReLU

Leaky ReLU

ReLU

Pooling2

2D Avg. pooling (2 × 2)

2D Avg. pooling (2 × 2)

1D Max pooling (2)

Activation3

Leaky ReLU

ReLU

Sigmoid

Convolution3

2D (5 × 5,24)

2D (6 × 6,32)

1D (5,32)

Pooling3

2D Avg. pooling (2 × 2)

2D Max pooling (2 × 2)

1D Max pooling (2)

Convolution4

2D (4 × 4,48)

2D (4 × 4,40)

1D (4,56)

Activation4

ReLU

ReLU

Sigmoid

Pooling4

2D Max pooling (2 × 2)

2D Max pooling (2 × 2)

1D Max pooling (2)

Convolution5

2D (3 × 3,56)

2D (3 × 3,64)

1D (3,64)

Activation5

ReLU

ReLU

Sigmoid

Pooling5

2D Max pooling (2 × 2)

2D Max pooling (2 × 2)

1D Max pooling (2)

FC1

80

210

90

FC2

3

9

9