Table 10 Results of the bayesian discriminant analysis.

From: Location optimization of cold chain logistics parks based on Bayesian probability theory and K-means clustering analysis in China

Cities

\(\:{{Y}}_{1}\)​

\(\:{{Y}}_{2}\)

\(\:{{Y}}_{3}\)​

Max value

Cluster assignment

Nanjing City

784.97

744.99

746.05

\(\:{Y}_{1}\)=784.97

1

Wuxi City

768.97

733.09

731.59

\(\:{Y}_{1}\)=768.97

1

Suzhou City

776.33

737.82

727.21

\(\:{Y}_{1}\)=776.33

1

Xuzhou City

688.76

723.41

678.43

\(\:{Y}_{2}\)=723.41

2

Nantong City

634.44

663.75

635.91

\(\:{Y}_{2}\)=663.75

2

Yancheng City

692.68

743.09

685.96

\(\:{Y}_{2}\)=743.09

2

Changzhou City

594.01

583.99

619.47

\(\:{Y}_{3}\)=619.47

3

Lianyungang City

457.78

473.44

513.54

\(\:{Y}_{3}\)=513.54

3

Huaian City

576.42

575.97

617.29

\(\:{Y}_{3}\)=617.29

3

Yangzhou City

501.21

497.80

536.66

\(\:{Y}_{3}\)=536.66

3

Zhenjiang City

496.88

494.27

546.13

\(\:{Y}_{3}\)=546.13

3

Taizhou City

527.85

530.63

582.19

\(\:{Y}_{3}\)=582.19

3

Suqian City

519.79

507.28

563.18

\(\:{Y}_{3}\)=563.18

3