Table 1 Average \(\ell _2\)-estimation errors (standard errors) for logistic regression under Pareto noise with regularization.

From: Robust learning for ridge-penalized quasi-GLMs under non-identical distributions

\(\tau\)

\(\beta\)

Truncation

Non-truncation

(100, 50)

(200, 100)

(500, 200)

(700, 300)

(1000, 1000)

(100, 50)

(200, 100)

(500, 200)

(700, 300)

(1000, 1000)

1.60

1.5

0.369 (0.190)

0.366 (0.157)

0.362 (0.137)

0.362 (0.125)

0.360 (0.115)

0.500 (0.350)

0.475 (0.313)

0.450 (0.275)

0.425 (0.238)

0.400 (0.200)

1.80

1.5

0.358 (0.144)

0.349 (0.116)

0.343 (0.101)

0.347 (0.091)

0.347 (0.090)

0.480 (0.325)

0.460 (0.294)

0.440 (0.263)

0.420 (0.231)

0.400 (0.200)

2.01

2.0

0.351 (0.106)

0.343 (0.087)

0.336 (0.077)

0.342 (0.069)

0.340 (0.067)

0.503 (0.300)

0.421 (0.263)

0.394 (0.225)

0.387 (0.188)

0.380 (0.150)

4.01

2.0

0.208 (0.155)

0.201 (0.235)

0.188 (0.253)

0.193 (0.262)

0.215 (0.235)

0.220 (0.246)

0.301 (0.311)

0.306 (0.360)

0.299 (0.363)

0.297 (0.349)

6.01

2.0

0.202 (0.135)

0.184 (0.193)

0.166 (0.207)

0.169 (0.215)

0.185 (0.231)

0.210 (0.202)

0.309 (0.311)

0.369 (0.345)

0.327 (0.310)

0.315 (0.288)