Table 1 Architectural breakdown of the proposed model.

From: Trustworthy pneumonia detection in chest X-ray imaging through attention-guided deep learning

Block

Role

Key parameters

Constitution (components)

Image input

Accepts image input

3 × 128 × 128 (RGB)

Input tensor of shape (batch_size, 3, 128, 128)

Spatial feature extraction block

Extracts spatial features

Conv2d (3 → 32),

Conv2d (32 → 64),

Conv2d (64 → 128)

Kernel = 3 × 3, Stride = 1, Padding = 1, BatchNorm, LeakyReLU, MaxPool (2 × 2, Stride = 2)

Flatten

Converts CNN features into vector

Flatten to 1D

Converts CNN output to a vectorized format

Temporal dynamics modeling block

Captures temporal dependencies

num_steps = 25, BiGRU = 2, Hidden Size = 256, Dropout = 0.3

Bidirectional GRU layers

Feature projection linear

Ensures smooth CNN → SNN transition

fc1 (65,536 → 128),

fc1 (128 → 64)

Fully connected layers

Spiking neural processing block

Processes spikes across time

num_steps = 25, Spike Aggregation = Mean

Time steps, spike aggregation

Decision head block

Outputs final classification

Fc1 (768 → 512), Dropout = 0.4

Fc2 (512 → 128), Dropout = 0.4

Fc3 (128 → 2)

Fully connected Layers + Dropout