Table 1 PQDs description and their mathematical models.
Disturbance type | Mathematical model |
|---|---|
Normal operation | \(V_{\text {normal}}(t) = V_{\text {normal}} \cdot \sin (2\pi ft)\) |
Voltage sag (Dip) | \(V_{\text {sag}}(t) = V_{\text {normal}}(1 - \alpha ) \cdot \sin (2\pi ft)\), where \(0.1 \le \alpha \le 0.9\) |
Voltage swell | \(V_{\text {swell}}(t) = V_{\text {normal}}(1 + \beta ) \cdot \sin (2\pi ft)\), where \(0.1 \le \beta \le 0.8\) |
Interruption | \(V_{\text {int}}(t) = 0\) for \(t_{\text {start}} \le t \le t_{\text {end}}\); |
| Â | \(V_{\text {int}}(t) = V_{\text {normal}} \cdot \gamma \cdot \sin (2\pi ft)\) otherwise |
Harmonics | \(V_{\text {harm}}(t) = V_{\text {normal}}(t) + \sum _{n=3,5,7}^{N} V_n \cdot \sin (2\pi nft + \phi _n)\) |
Oscillatory transients | \(V_{\text {harm}}(t) = V_{\text {normal}}(t) + V_{\text {peak}}(t) e^{-\sigma t} \cdot \sin (2\pi f_{\text {osc}} t)\), where \(f_{\text {osc}} = 300{-}5000\) Hz |
Impulse transients | \(V_{\text {impulse}}(t) = V_{\text {normal}}(t) + V_{\text {peak}} \cdot e^{\left( \frac{t - t_0}{\tau } \right) }\) |
Voltage flicker | \(V_{\text {flicker}}(t) = V_{\text {normal}}(t) \left[ 1 + m \cdot \sin (2\pi f_{\text {flicker}} t) \right] \cdot \sin (2\pi f_{\text {osc}} t)\), where \(m \le 0.1\), \(f_{\text {flicker}} \le 25\) Hz |
Voltage gap | \(V_{\text {gap}}(t) = V_{\text {normal}}(t) \cdot \lambda \cdot \sin (2\pi ft)\) for \(t_{\text {start}} \le t \le t_{\text {end}}\), \(\lambda \le 0.1\), \(t \le 0.2\) s |
Voltage spike | \(V_{\text {spike}}(t) = V_{\text {normal}}(t) + V_{\text {spike}}(t) \cdot e^{- \frac{(t - t_0)^2}{2\sigma _{\text {spike}}^2}}\), where \(\sigma _{\text {spike}} \approx 1\) ms |