Table 3 Metrics of model accuracy for each classifier machine-learning model as assessed using test data.

From: Optimizing machine learning models for predicting health service access and determinants among pregnant women in rural Ethiopia

Machine learning algorithms

 
 

Decision Tree (%)

Random Forest (%)

Naïve Bayes (%)

Logistic Regression (%)

SVM (%)

Gradient Boosting (%)

KNN (%)

Sensitivity

27.91

41.86

0.00

13.95

4.65

30.23

37.21

Specificity

97.74

99.25

98.50

96.24

100

95.49

92.48

PP Value

80.00

94.74

0.00

54.55

100

68.42

61.54

NP Value

80.75

84.08

75.29

77.58

76.44

80.89

82.00

Accuracy

80.68

85.23

74.43

76.14

76.70

79.55

78.98

AUC

73.90

73.10

72.2

73.80

75.10

81.40

72.50