Table 8 ACS classification performance on the external cohort. Reported is \(\mu \pm 2\sigma\) where the samples come from 5-fold stratified cross-validation on the training set. XGBoost is the predictor with the best reported performance in previous work2.

From: Selective classification with machine learning uncertainty estimates improves ACS prediction: a retrospective study in the prehospital setting

Method

Prevalence

Coverage

Sensitivity

Specificity

PPV

NPV

AUROC

Accuracy

GBDT

\(18 \pm 0\)

\(100 \pm 0\)

\(90 \pm 4\)

\(86 \pm 3\)

\(59 \pm 4\)

\(97 \pm 1\)

\(88 \pm 1\)

\(87 \pm 2\)

GBDT+SC

\(16 \pm 2\)

\(75 \pm 5\)

\(94 \pm 2\)

\(96 \pm 4\)

\(81 \pm 10\)

\(99 \pm 0\)

\(95 \pm 2\)

\(95 \pm 3\)

XGBoost

\(18 \pm 0\)

\(100 \pm 0\)

\(63 \pm 12\)

\(97 \pm 3\)

\(83 \pm 13\)

\(92 \pm 2\)

\(80 \pm 4\)

\(91 \pm 1\)

XGBoost+SC

\(11 \pm 2\)

\(80 \pm 6\)

\(70 \pm 10\)

\(99 \pm 0\)

\(93 \pm 2\)

\(97 \pm 1\)

\(85 \pm 5\)

\(96 \pm 1\)