Table 2 Performance of the prediction models using all features (without SMOTE).

From: Using machine learning for early prediction of in-hospital mortality during ICU admission in liver cancer patients

Model

AUROC

AUPRC

Optimal

threshold

Accuracy

F1 Score

Internal test

 Logistic

regression

0.878

(0.812, 0.934)

0.752

(0.624, 0.863)

0.299

0.844

(0.792, 0.902)

0.722

(0.610, 0.818)

 Random

forest

0.911

(0.855, 0.956)

0.823

(0.718, 0.905)

0.350

0.861

(0.809, 0.908)

0.745

(0.632, 0.836)

 LightGBM

0.885

(0.826, 0.937)

0.786

(0.662, 0.888)

0.176

0.850

(0.798, 0.896)

0.717

(0.609, 0.817)

 XGBoost

0.870

(0.803, 0.926)

0.722

(0.584, 0.859)

0.084

0.798

(0.734, 0.855)

0.673

(0.554, 0.764)

External test

 Logistic

regression

0.836

(0.798, 0.869)

0.723

(0.666, 0.779)

0.285

0.763

(0.731, 0.793)

0.624

(0.570, 0.674)

 Random

Forest

0.857

(0.826, 0.889)

0.746

(0.689, 0.792)

0.570

0.828

(0.802, 0.857)

0.577

(0.502, 0.641)

 LightGBM

0.841

(0.805, 0.876)

0.717

(0.657, 0.773)

0.973

0.789

(0.759, 0.818)

0.360

(0.278, 0.440)

 XGBoost

0.847

(0.814, 0.880)

0.731

(0.671, 0.787)

0.945

0.809

(0.780, 0.837)

0.459

(0.374, 0.531)