Table 3 Algorithm performance comparison and statistical significance test results.

From: An efficient aggregation algorithm based on synchronous-asynchronous mechanism for federated learning

Algorithm

Datasets and distribution

Average accuracy

Average train time

ACC(%)

t-statistic

P value

train time(s)

t-statistic

P value

SaAS-FL

MNIST-iid

98.09 ± 0.04

861.40 ± 22.20

MNIST-noniid (alpha = 0.5)

97.53 ± 0.14

842.6 ± 28.54

CIFAR10-iid

74.65 ± 0.59

1825.80 ± 18.25

CIFAR10-noniid (alpha = 0.5)

70.97 ± 0.53

1848.80 ± 21.73

FedAvg

MNIST-iid

98.47 ± 0.44

− 1.922

0.1270

4622.20 ± 77.48

− 99.142

1 × 10–7

MNIST-noniid (alpha = 0.5)

98.66 ± 0.09

− 14.897

0.0001

4683.0 ± 187.44

 − 43.501

2 × 10–6

CIFAR10-iid

85.33 ± 0.08

− 43.641

2 × 10–6

13,400.40 ± 25.26

− 1240.500

3 × 10–12

CIFAR10-noniid (alpha = 0.5)

82.65 ± 0.46

− 53.423

1 × 10–6

13,325.00 ± 914.81

 − 28.013

1 × 10–5

FedAsync

MNIST-iid

76.80 ± 3.96

 + 11.980

0.0003

2136.40 ± 43.95

− 48.437

1 × 10–6

MNIST-noniid (alpha = 0.5)

45.60 ± 9.56

 + 12.300

0.0003

2125.2 ± 26.39

− 58.772

1 × 10–6

CIFAR10-iid

41.60 ± 2.07

 + 28.222

9 × 10–6

2834.20 ± 32.00

− 102.780

5 × 10–8

CIFAR10-noniid (alpha = 0.5)

35.80 ± 2.77

 + 24.113

2 × 10–5

2631.80 ± 71.36

− 21.657

3 × 10–5