Table 1 Summary of cancer classification studies (categorized by dataset).

From: Cross-platform multi-cancer histopathology classification using local-window vision transformers

Dataset

Author(s)

Classification methods

Accuracy

Limitations

Wisconsin Breast Cancer Dataset (WBCD)

Hoque et al25.

XGBoost

94.74%

Overfitting risks, limited to tabular features, and generalization issues

Batool and Byun26

Voting Ensemble (ETC + LightGBM + RC + LDA)

97.6%

Limited data diversity; not tested on multimodal data

IDC + BreaKHis

Kaddes et al27.

Hybrid CNN-LSTM

99.17%, 99.90%

High computational cost; lacks interpretability; generalizability untested

Real-world Breast Cancer Dataset

Wani et al28.

CNN + LGBM + SHAP

98.29%

High complexity; unclear dataset details

DCE-MRI Sequences

Prinzi et al29.

Time-Series (Rocket, MultiRocket)

85.2%

Moderate performance; time-series complexity

MIAS, CBIS-DDSM, INbreast

Chakravarthy et al30.

Hybrid CNN (VGG16, VGG19, ResNet50, DenseNet121)

98.7%, 97.7%, 98.8%

Class imbalance; low generalizability

ISIC 2019

Ozdemir and Pacal31

Hybrid CNN (ConvNeXtV2 + Separable Attention)

93.48%

Needs testing on other clinical datasets

ISIC, HAM10000, PH2, BCN20000

Hussain et al32.

ANN, SVM, RF, K-Means

–

Traditional methods, not multiclass

Hermosilla et al33.

CNNs, SVMs, hybrid

–

Not nine-class capable

Hussein & Abdulazeez34

SVM, KNN, CNN (review)

–

Bias in datasets: small training sets

Yang et al35.

Deep CNNs, GoogleNet, Transformers

Up to 97%

Lighting inconsistency; imbalance

Naeem et al36.

SNC-Net (InceptionV3)

–

Architecture not disclosed

Imran et al37.

EfficientNetB0 + ACO

–

Lacks novelty; not multiclass

LC25000 (Lung & Colon)

Hasan et al38.

Lightweight multi-scale CNN

–

Cannot classify the nine types

Shahadat et al39.

1D channel-based attention CNN

~ 100%

No overfitting prevention

Mengash et al40.

CLAHE + MobileNet + DBN

–

Not nine-class capable

Uddin et al41.

CNN, DNN, VGG-16, ResNet-50

98.8%

Single dataset only

Khan et al42.

Hybrid CNN-RNN (LSTM)

98.70%

Not compared with SOTA models

IQ-OTH/NCCD

Gulsoy et al43.

FocalNeXt (ConvNeXt + FocalNet)

99.81%

Needs clinical validation

Krishnamoorthy et al44.

AC-WGAN + HOA

99.2%

High computational cost

Musthafa et al45.

CNN + SMOTE

99.64%

Bias from synthetic oversampling

Colon Dataset (DS1)

Azar et al46.

CNNs + various optimizers

–

Low accuracy; not multiclass capable

GDS3837

Zheng et al47.

Gene profiling + XGBoost

–

Lower accuracy

TCIA, TCGA

Sangeetha et al48.

Multimodal Fusion DNN (MFDNN)

–

Lower accuracy

LIDC, LUNA16, JSRT

Gayap et al49.

CNNs, dual-path networks, ViTs

–

Survey only; no multiclass model

Dawood et al50.

CenterNet (ResNet-34 + attention)

–

Limited data; no multiclass classification

General (47-study SLR)

Nakach et al51.

Multimodal Deep Learning Fusion

~ 99%

Lacks standardization; interpretability issues

Lung and Colon

Sobur et al52.

Dual-CNN

–

Architecture details missing

Survey Lung Dataset

Wani et al53.

CNN + XGBoost

–

Binary only; not multiclass