Table 5 Performance comparison of CancerDet-Net with baseline models.

From: Cross-platform multi-cancer histopathology classification using local-window vision transformers

Model

Test accuracy (%)

Recall (%)

F1 score (%)

Precision (%)

InceptionV3

94.67

90.50

97.00

90.81

MobileNetV2

92.27

88.22

95.00

88.65

Xception

95.55

95.55

95.55

95.55

VGG16

94.95

92.10

94.00

92.33

DenseNet121

92.90

91.20

92.30

91.10

ResNet50

92.50

90.80

92.00

90.75

EfficientNetB0

88.35

86.50

88.10

86.00

ShuffleNetV2

81.20

79.80

81.00

79.50

CancerDet-Net

98.51

98.51

98.51

98.52