Table 8 Performance metrics of CancerDet-Net model under various conditions on nine types of cancer dataset.

From: Cross-platform multi-cancer histopathology classification using local-window vision transformers

Condition

Value

Accuracy (%)

Precision (%)

Recall (%)

F1-score (%)

Input shape

128 × 128

98.51

98.52

98.51

98.51

64 × 64

94.44

94.39

94.48

94.43

224 × 224

97.63

97.45

97.80

97.62

Attention

Axial

85.88

87.03

86.53

86.77

Linearized Self

83.77

85.11

84.61

84.86

Cross

95.06

95.75

95.25

95.50

Multi-Head Self

94.33

94.51

94.51

94.63

Local-Window

98.51

98.52

98.51

98.51

Block

Without the HMSGA

96.55

95.21

95.84

95.52

Without the CFE

94.44

94.45

94.44

94.44

Without ViT

92.31

92.02

92.60

92.31

With 1 ViT

95.23

95.00

94.20

94.60

With 2 ViT

98.51

98.52

98.51

98.51