Table 1 The effect of gender and knowledge on AI appreciation in the first week ‘one-shot’ experiment. The dependent variable is the weight on advice (WOA), with values between 0 and 1. Our main explanatory variables (Gender, AI advice and High-knowledge) are binary; thus, the coefficients can be interpreted in percentage terms. The table reports OLS coefficient estimates and (in parentheses) p-values based on robust standard errors. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels (two-tailed), respectively.

From: Gender, knowledge, and trust in artificial intelligence: a classroom-based randomized experiment

  

(1)

(2)

(3)

(4)

WOA

WOA

WOA

WOA

AI advice

RQ1

0.0718***

0.146***

0.161***

0.214***

 

(0.006)

(0.002)

(0.000)

(0.000)

Gender

 

-0.0560**

-0.00754

-0.0413

-0.00289

 

(0.038)

(0.816)

(0.118)

(0.928)

High-knowledge

 

-0.152***

-0.141***

-0.0811**

-0.0783**

 

(0.000)

(0.000)

(0.014)

(0.017)

AI advice x Gender

RQ2

 

-0.121**

 

-0.0988*

  

(0.031)

 

(0.076)

AI advice x High-knowledge

RQ2

  

-0.168***

-0.155***

   

(0.001)

(0.003)

Task easiness

 

-0.361***

-0.361***

-0.361***

-0.361***

 

(0.000)

(0.000)

(0.000)

(0.000)

Conceptual task

 

-0.0702*

-0.0702*

-0.0702**

-0.0702**

 

(0.050)

(0.051)

(0.048)

(0.049)

Advice accuracy

 

0.0448*

0.0448*

0.0448*

0.0448*

 

(0.090)

(0.088)

(0.088)

(0.087)

Constant

 

0.507***

0.474***

0.459***

0.436***

 

(0.000)

(0.000)

(0.000)

(0.000)

r2

 

0.124

0.130

0.135

0.139

Adjusted r2

 

0.118

0.122

0.128

0.131

Number of participants

 

59

59

59

59

N

 

826

826

826

826