Table 3 Detection performance on road condition dataset.

From: An intelligent YOLO and CNN-BiGRU framework for road infrastructure based anomaly assessment

Model

mAP@0.5 (%)

mAP@0.5:0.95 (%)

Avg. AUROC

F1-score

Mask R-CNN

89.7

68.9

0.931

0.881

Detectron2

91.4

70.2

0.944

0.896

YOLOv7

91.3

70.4

0.948

0.901

YOLOv8

93.2

72.9

0.958

0.916

YOLOv9

94.1

74.7

0.963

0.927

YOLOv10

95.3

76.8

0.967

0.933

YOLOv11

96.1

78.1

0.972

0.941

Proposed model

97.5

80.4

0.982

0.954

  1. Significant values are in bold.