Table 4 Detection performance on environmental dataset.

From: An intelligent YOLO and CNN-BiGRU framework for road infrastructure based anomaly assessment

Model

mAP@0.5 (%)

mAP@0.5:0.95 (%)

Avg. AUROC

F1-score

Mask R-CNN

88.1

65.7

0.929

0.874

Detectron2

90.3

67.9

0.941

0.891

YOLOv7

89.5

67.2

0.943

0.889

YOLOv8

91.7

69.5

0.951

0.902

YOLOv9

93.3

71.8

0.961

0.915

YOLOv10

94.6

74.1

0.968

0.927

YOLOv11

95.4

76.3

0.971

0.938

Proposed model

96.9

78.9

0.985

0.949

  1. Significant values are in bold.