Table 5 Performance comparison of the proposed model and previous studies in terms of \(r^2\), AAE, and ASE.

From: An intelligent YOLO and CNN-BiGRU framework for road infrastructure based anomaly assessment

Model

\(\varvec{r}^\textbf{2} \mathbf{(Mean} \varvec{\pm } \mathbf{SD)}\)

AAE (Mean \(\varvec{\pm }\) SD)

ASE (Mean \(\varvec{\pm }\) SD)

Luo et al.36

0.50 ± 0.11

0.75 ± 0.59

0.78 ± 0.89

Zhang et al.37

0.57 ± 0.17

0.73 ± 0.08

0.68 ± 0.28

Rathee et al.38

0.67 ± 0.73

0.71 ± 0.04

0.78 ± 0.85

Proposed model

0.77 \(\varvec{\pm }\) 0.77

0.31 \(\varvec{\pm }\) 0.01

0.34 \(\varvec{\pm }\) 0.13

  1. Significant values are in bold.