Table 2 Precision, Recall, and FNR for each attack type using FedGATSage on NF-ToN-IoT and CIC-ToN-IoT datasets.

From: Graph-based federated learning approach for intrusion detection in IoT networks

Attack Type

NF-ToN-IoT

CIC-ToN-IoT

Precision

Recall

FNR

Precision

Recall

FNR

Benign

0.9986

0.9944

0.0056

1.0000

0.9785

0.0215

Backdoor

0.9451

0.9942

0.0058

0.9816

1.0000

0.0000

DDoS

0.8939

0.5322

0.4678

0.8939

0.5322

0.4678

DoS

0.3896

1.0000

0.0000

0.3896

1.0000

0.0000

Injection

0.9760

0.3412

0.6588

0.7266

0.5146

0.4854

Password

0.3890

0.6226

0.3774

0.5268

0.7296

0.2704

Scanning

0.1050

0.8029

0.1971

0.7634

0.9302

0.0698

XSS

0.4197

0.9990

0.0010

0.9186

0.6612

0.3388