Table 3 Comparative outcome of APOFTLM-EGR model with existing approaches18,19,20,21,22,23,54,55,56.

From: An intelligent fusion-based transfer learning model with artificial protozoa optimiser for enhancing gesture recognition to aid visually impaired people

Model

\({\varvec{A}}{\varvec{c}}{\varvec{c}}{{\varvec{u}}}_{{\varvec{y}}}\)

\({\varvec{P}}{\varvec{r}}{\varvec{e}}{{\varvec{c}}}_{{\varvec{n}}}\)

\({\varvec{R}}{\varvec{e}}{\varvec{c}}{{\varvec{a}}}_{{\varvec{l}}}\)

\({{\varvec{F}}}_{{\varvec{S}}{\varvec{c}}{\varvec{o}}{\varvec{r}}{\varvec{e}}}\)

APOFTLM-EGR

99.46

98.72

98.52

98.58

BiLSTM

94.05

96.52

96.65

94.43

XLNet-BIGRU-Attention

95.08

97.20

95.64

96.57

YOLOv5s

97.18

96.93

94.97

94.67

IoT-FAR

98.88

94.67

95.13

92.34

DSMS-TF

93.42

95.96

96.21

94.04

MSAD

94.51

96.69

95.00

96.03

ResNeXt

98.81

94.62

95.07

92.29

DenseNet121

93.34

95.90

96.16

93.97

ResNet50

94.46

96.63

94.92

95.97

SLDC-RSAHDL

99.23

95.74

96.18

94.18

kNN

97.55

92.34

96.59

95.64

ANN Algorithm

98.76

94.55

95.01

92.22

3D-CNN Model

93.27

95.84

96.08

93.90

LSTM Method

94.40

96.58

94.86

95.90

KRLS Method

96.58

96.42

94.34

94.01

AiFusion

92.66

96.71

93.67

93.82