Table 3 Detailed summary of the proposed CNN architecture, including layer configurations and parameters.

From: Spike train analysis in rehabilitation movement classification using deep learning approach

Proposed CNN architecture

Input: 224 \(\times\) 224 \(\times\) 3 images

1

layers = intended layers

2

layers.add(zero padding 3 \(\times\) 3)

3

layers.add(convolutional 7 \(\times 7, 64\))

4

layers.add(batch normalization)

5

layers.add(ReLu)

6

layers.add(maximum pooling stride of 2)

7

layers.add(convolutional block 1 \(\times 1, 64; 3\times 3, 64; 1\times \text{1,256}\))

8

layers.add(2 identity blocks)

9

layers.add(convolutional block 1 \(\times 1, 128; 3\times 3, 256; 1\times \text{1,1024}\))

10

layers.add(3 identity blocks)

11

layers.add(convolutional block 1 \(\times 1, 256; 3\times 3, 256; 1\times \text{1,1024}\))

12

layers.add(5 identity blocks)

13

layers.add(convolutional block 1 \(\times 1, 512; 3\times 3, 512; 1\times \text{1,2048}\))

14

layers.add(2 identity blocks)

15

layers.add(global average pooling 1 \(\times 1\times 2048\))

16

layers.add(fully connected layers dropout probability = 0.5)

17

layers.add(fully connected layers dropout probability = 0.5)

18

layers.add(softmax = 5 classes)

Output