Table 6 Evaluation results of YOLO12-Nano with different input image sizes on the OpenUrine test set. Metrics are reported as mean±std (%) across five cross-validation folds. The table demonstrates how increasing input resolution substantially improves the detection of urinary sediment particles, with the best performance achieved at \(960 \times 960\) pixels.

From: A multi-head YOLOv12 with self-supervised pretraining for urinary sediment particle detection

Input size

Precision (%)

Recall (%)

mAP50 (%)

mAP50-95 (%)

40

\(79.60{\pm }10.1\)

\(7.75{\pm }1.74\)

\(9.73{\pm }0.15\)

\(5.40{\pm }0.18\)

80

\(43.86{\pm }3.82\)

\(20.41{\pm }1.80\)

\(15.07{\pm }0.18\)

\(9.51{\pm }0.54\)

160

\(54.90{\pm }6.82\)

\(29.39{\pm }0.84\)

\(28.94{\pm }0.56\)

\(19.83{\pm }0.15\)

320

\(53.70{\pm }0.76\)

\(38.09{\pm }1.44\)

\(39.51{\pm }0.30\)

\(27.52{\pm }0.47\)

640

\(60.55{\pm }1.69\)

\(51.57{\pm }0.63\)

\(51.88{\pm }0.07\)

\(36.92{\pm }0.41\)

960

\({{\bf 63.40}}{\pm } {{\bf 0.30}}\)

\({{\bf 53.00}}{\pm } {{\bf 2.10}}\)

\({{\bf 55.98}}{\pm } {{\bf 0.31}}\)

\({{\bf 38.91}}{\pm } {{\bf 0.68}}\)

1280

\(56.29{\pm }3.97\)

\(53.49{\pm }3.08\)

\(54.00{\pm }0.30\)

\(36.44{\pm }0.45\)