Table 3 Performance analysis of used algorithms on breast cancer classification problem.
| Â | Algorithms | Accuracy (%) | MSE | SD |
|---|---|---|---|---|
| Â | ABCNN | 85.31 | 0.1080 | 0.0195 |
CSNN | 91.61 | 0.0626 | 0.0107 | |
ERN | 98.00 | 0.0140 | 0.0130 | |
LM | 95.20 | 0.0280 | 0.0142 | |
DNN-RBM | 98.24 | – | – | |
ABCFLNN | 94.74 | 0.2627 | – | |
ABC-BP | 92.02 | 0.184 | 0.459 | |
ABC-LM | 93.83 | 0.0139 | 0.0010 | |
ABCNN | 88.96 | 0.014 | 0.0002 | |
BPNN | 90.71 | 0.271 | 0.017 | |
CSBPERN | 97.37 | 0.00072 | 0.0004 | |
CAPSO-MLP | 82.50 | 0.175 | – | |
PSO-MLP | 80 | 0.179 | – | |
GSA-MLP | 80 | 0.190 | – | |
ICA-MLP | 80 | 0.180 | – | |
bSCWDTO-KNN | 97.64 | 0.369 | 0.2763 | |
bDTO-KNN | 92.74 | 0.381 | 0.2810 | |
bPSO-KNN | 95.01 | 0.382 | 0.2851 | |
bWAO-KNN | 93.98 | 0.402 | 0.2914 | |
bGWO-KNN | 94.76 | 0.381 | 0.2802 | |
bMVO-KNN | 94.21 | 0.380 | 0.2821 | |
bSBO-KNN | 95.43 | 0.392 | 0.2988 | |
bGWOGA-KNN | 94.58 | 0.404 | 0.2916 | |
bFA-KNN | 94.82 | 0.392 | 0.2810 | |
bGA-KNN | 96.12 | 0.387 | 0.2832 | |
bSC-KNN | 93.29 | 0.373 | 0.2800 | |
bGWDTO-KNN | 95.23 | 0.245 | 0.1365 | |
bGWDTO-KNN | 71.64 | 0.5811 | 0.40078 | |
Proposed | RMONN | 98.60 | 0.0184 | 0.0022 |
RMOBPERN | 98.60 | 0.042 | 0.0001 | |
RMOLMBP | 97.20 | 0.049 | 0.00012 | |
RMOLM | 96.50 | 0.042 | 0.00031 |