Table 3 Performance analysis of used algorithms on breast cancer classification problem.

From: A hybrid bio inspired neural model based on Ropalidia Marginata behavior for multi disease classification

 

Algorithms

Accuracy (%)

MSE

SD

 

ABCNN

85.31

0.1080

0.0195

CSNN

91.61

0.0626

0.0107

ERN

98.00

0.0140

0.0130

LM

95.20

0.0280

0.0142

28

DNN-RBM

98.24

–

–

64

ABCFLNN

94.74

0.2627

–

65

ABC-BP

92.02

0.184

0.459

ABC-LM

93.83

0.0139

0.0010

ABCNN

88.96

0.014

0.0002

BPNN

90.71

0.271

0.017

CSBPERN

97.37

0.00072

0.0004

19

CAPSO-MLP

82.50

0.175

–

PSO-MLP

80

0.179

–

GSA-MLP

80

0.190

–

ICA-MLP

80

0.180

–

66

bSCWDTO-KNN

97.64

0.369

0.2763

bDTO-KNN

92.74

0.381

0.2810

bPSO-KNN

95.01

0.382

0.2851

bWAO-KNN

93.98

0.402

0.2914

bGWO-KNN

94.76

0.381

0.2802

bMVO-KNN

94.21

0.380

0.2821

bSBO-KNN

95.43

0.392

0.2988

bGWOGA-KNN

94.58

0.404

0.2916

bFA-KNN

94.82

0.392

0.2810

bGA-KNN

96.12

0.387

0.2832

bSC-KNN

93.29

0.373

0.2800

67

bGWDTO-KNN

95.23

0.245

0.1365

68

bGWDTO-KNN

71.64

0.5811

0.40078

Proposed

RMONN

98.60

0.0184

0.0022

RMOBPERN

98.60

0.042

0.0001

RMOLMBP

97.20

0.049

0.00012

RMOLM

96.50

0.042

0.00031