Table 4 Performance analysis of used algorithms on diabetes classification problem.
| Â | Algorithms | Accuracy | MSE | SD |
|---|---|---|---|---|
ABCNN | 71.88 | 0.2505 | 0.0154 | |
CSNN | 73.87 | 0.1505 | 0.0554 | |
ERN | 72.92 | 0.2708 | 0.0408 | |
LM | 72.92 | 0.7208 | 0.0200 | |
ABC-LM | 65.09 | 0.14 | 0.0330 | |
ABCNN | 68.09 | 0.131 | 0.0210 | |
BMNABC + C4.5 | 76.17 | – | – | |
BMNABC + KNN | 70.44 | – | – | |
BMNABC + NB | 76.43 | – | – | |
BMNABC + ODF | 77.21 | – | – | |
PCA + Naïve Bayes | 79.13 | – | – | |
Mean imputation + LSTM | 85.00 | – | – | |
Mean imputation + RB-Bayes | 72.90 | – | – | |
Mean imputation + NB | 76.30 | – | – | |
CAPSO-MLP | 74.68 | 0.204 | – | |
PSO-MLP | 74.03 | 0.205 | – | |
GSA-MLP | 56.49 | 0.267 | – | |
ICA-MLP | 66.23 | 0.222 | – | |
bSCWDTO-KNN | 65.00 | 3.500 | 0.2560 | |
bDTO-KNN | 63.37 | 3.663 | 0.2701 | |
bSC-KNN | 64.50 | 3.550 | 0.2752 | |
bPSO-KNN | 62.68 | 3.732 | 0.2593 | |
bWOA-KNN | 61.67 | 3.833 | 0.2650 | |
bGWO-KNN | 65.09 | 3.491 | 0.2577 | |
bMVO-KNN | 60.03 | 3.997 | 0.2560 | |
bSBO-KNN | 62.09 | 3.791 | 0.2790 | |
bGA-KNN | 63.47 | 3.653 | 0.2775 | |
bFA-KNN | 62.74 | 3.726 | 0.2652 | |
bGWO_GA-KNN | 65.74 | 3.426 | 0.2655 | |
bGWDTO-KNN | 87.23 | 0.256 | 0.1475 | |
bGWDTO-KNN | 75.64 | 0.5825 | 0.4407 | |
Proposed | RMONN | 88.38 | 0.1235 | 0.0313 |
RMOBPERN | 70.31 | 0.3073 | 0.0021 | |
RMOLMBP | 97.20 | 0.049 | 0.0011 | |
RMOLM | 71.88 | 0.2812 | 0.0023 |