Table 1 Comparison of WSI classification and location performance between CAMCSA and other methods on the Camelyon16 dataset. CAMCSA/without CSA denotes the experimental results on Camelyon16 of CAMCSA before introducing the CSA module.

From: Cross-slide augmentation for whole slide image classification based on class activation map

Methods

Camelyon16

ACC

AUC

FROC

Mean pooling

0.7820

0.7917

0.1171

Max pooling

0.8178

0.8165

0.3421

ABMIL

0.8643

0.8823

0.4042

DSMIL

0.8996

0.9137

0.4213

Trans-MIL

0.8879

0.9221

0.4409

DTFD-MIL

0.9029

0.9502

0.4587

MHIM-MIL

0.9201

0.9608

0.4590

CAMCSA/without CAM and CSA

0.9021

0.9343

0.4378

CAMCSA/without CAM

0.9271

0.9532

0.4652

CAMCSA/without CSA

0.9399

0.9676

0.4742

CAMCSA

0.9433

0.9793

0.4808