Table 2 Quantitative comparison of forecasting performance across different methods on the MRMS and Nha Be datasets.
Dataset | Method | MSE \((\downarrow )\) | SSIM \((\uparrow )\) | CSI(1) \((\uparrow )\) | CSI(8) \((\uparrow )\) | CSI(16) \((\uparrow )\) |
|---|---|---|---|---|---|---|
The MRMS Dataset (450, 1000) | PySTEPS8 | 107.52 | 0.75 | 0.402 | 0.198 | 0.104 |
NowcastNet36 | 42.33 | 0.88 | 0.734 | 0.612 | 0.297 | |
TrajGRU13 | 91.23 | 0.81 | 0.508 | 0.312 | 0.102 | |
PredRNN14 | 56.81 | 0.86 | 0.681 | 0.605 | 0.293 | |
DiffCast26 | 43.10 | 0.90 | 0.722 | 0.604 | 0.345 | |
ThoRÂ (Ours) | 40.24 | 0.94 | 0.702 | 0.653 | 0.351 | |
The MRMS Dataset (1400, 3000) | PySTEPS8 | 102.38 | 0.76 | 0.387 | 0.182 | 0.088 |
NowcastNet36 | 39.61 | 0.89 | 0.756 | 0.531 | 0.305 | |
TrajGRU13 | 89.33 | 0.80 | 0.488 | 0.294 | 0.101 | |
PredRNN14 | 59.22 | 0.84 | 0.697 | 0.558 | 0.260 | |
DiffCast26 | 42.17 | 0.85 | 0.704 | 0.560 | 0.286 | |
ThoRÂ (Ours) | 44.25 | 0.91 | 0.712 | 0.575 | 0.291 | |
The MRMS Dataset (1700, 5500) | PySTEPS8 | 101.27 | 0.79 | 0.352 | 0.132 | 0.096 |
NowcastNet36 | 35.53 | 0.88 | 0.835 | 0.528 | 0.198 | |
TrajGRU13 | 83.61 | 0.81 | 0.504 | 0.230 | 0.065 | |
PredRNN14 | 47.40 | 0.82 | 0.751 | 0.535 | 0.267 | |
DiffCast26 | 40.12 | 0.89 | 0.821 | 0.539 | 0.291 | |
ThoRÂ (Ours) | 34.12 | 0.89 | 0.755 | 0.556 | 0.260 | |
The Nha Be Dataset | PySTEPS8 | 86.19 | 0.84 | 0.412 | 0.179 | 0.112 |
NowcastNet36 | 53.77 | 0.96 | 0.811 | 0.599 | 0.423 | |
TrajGRU13 | 85.12 | 0.83 | 0.325 | 0.230 | 0.107 | |
PredRNN14 | 55.48 | 0.83 | 0.758 | 0.605 | 0.377 | |
DiffCast26 | 55.06 | 0.90 | 0.766 | 0.608 | 0.392 | |
ThoRÂ (Ours) | 49.23 | 0.91 | 0.742 | 0.612 | 0.461 |